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ABSTRACT

- Measures of information in censored models are developed by adapting
measurcs of dependence between the lifetime variable and the observed variable.
Some common notions of bivariate dependence and coefficients of divergence are
used to derive these classes of measures. It is shown that most of the measures
of bivariate dependence have the fundamental property that as censoring decreases
stochastically, the information increases. An exception occurs when dependence
is defined in terms of association. Conditions under which the coefficients of

divergence enjoy the fundamental property are established.
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1. Iintroduction.

Let Xl, Xz. oo xn be independent and identically distributed (i.i.d.)
random variables with distribution function (d.f.) P(x) =Pr(X<x). We consider
the randomly right-censored model where the value of the random variable X is
sometimes unobservable. Associated with each Xi is a variable Yi independent of
X;. These Y

i i's are i.i.d. with d.f, Q(x). The observations consist of the pairs

(Z,

i’ Gi), i=1, 2, ..., n, where Zi=min(xi, Yi), Gi=I(XsY), and I(A) is the

indicator function of the set A. Typically the concern of the statistician is
how to best make use of the Z 's and §'s to estirate F cr some functicnal of F.
Given that this censoring is to take place another question arises. Suppose
more than one censoring variable is available and the experimenter is given his
choice as to which to use. ‘hich variable should he choose? One approach is to
choose the censoring variable which provides the greatest "information''. Thus
we seek general ways to measure information in censored models.
What properties should information measures possess? It is reaconable to
expect that it is better to observe an X than a Y. Furthermore, stochastically
increasing Y should increase information. Thus we consider the following two

requirements for information measures.

1f Y1 s.«:t Y2’ the information in (Zl’ 61) is less than the
information in (22, 62) where Zi =min(X, Yi) and 6i= I(XSYi), (1.1)

i=1, 2, for every X.

For every X and Y the information in X is greater than

(1.2)
the information in (Z, §), Z=min(X, Y), 6§=I(X<Y),.
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In general (1.2) will foliow from (1.1) by taking YZE(» so that Z2 has the
same distribution as X. The adequacy of all information measures considered
here will be with regard to (1.1) and (1.2). If (1.1) or (1.2) fail to hold,
the measure is inadequate. Note that it is the monotonicity of the measure that
is of interest as the measure can be made to increase or decrease by simply
changing the sign in its definition.

In Section 2 notions of bivariate dependence are used to measure informa-
tion. idodels in which Y is increased stochastically should generally lead to
increased dependence of X and Z. Thus measures of dependence provide a natural
framework for studying information in the censored model.

Various notions of bivariate dependence are considered as candidates for
measurcs of information. These include positive quadrant dependence (PQD),
association, left-tail decreasing (LTD), right-tail increasing (RTI), and sto-
chastically increasing (SI). Each of these is a notion of positive dependence
which requires a certain probability that the variables are in some quadrant to
be positive. These notions are extended to notions of "more positive quadrant
dependent," '"more associated,' etc., by requiring that this probability be
increasing. Then these new notions for increased positive dependence are con-
sidered for the role of measures of information. With properties (1.1) and (1.2)
as criteria, it is shown that, with the exception of association, all of these
notions of bivariate dependence are satisfactory.

In Section 3 the relationship between X and Z is explored through their
related probability functions. Since Z is equal to X more often as censoring
decreases it should be true that the probabilistic structure of Z should approach

that of X as censoring deccreases, One way to measure closeness of probability

distributions is by coefficients nf diveirgenco General eclascos of those measurcs

. -
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have been proposed independently by Csiszar (1963, 1967), Ali and Silvey (1965a,
1965b, 1966), and Ziv and Zakai (1973).

We use the following conventions: For a function f,

£(0) = lir'T(x)

x+0
0
O.f(6)=0 (1‘3)
0-£(3=1im a £ 250,
o) = im ety

Let f(x) be a convex function. Let o(x) and B(x) be nonnegative measurable
functions on some measure space (X, A, P). Then the coefficient of divergence

for a(x) and B(x) is defined by
Ie(e, 8) = [,B8(x) f{%‘—%)l} dP(x). (1.4)

For probability density functions pl(x) and pz(x), both absolutely continuous

with respect to some measure A, (1.4) becomes

P, (x)
If(pI: pz Ipl(x) f{ £ }A(dx) (1.5)

This is the measure introduced by Csiszar. Ali and Silvey use a slightly
different version defined by:

1(4) =E*{f(¢)}=f¢ LE(8)dP, + P (N) hmf—%‘?i (1.6)
>

where ¢ is the generalized Radon-Nikodym derivative of P, with respect to Pl and

2
Nis a Pl—null set where P2 has positive measure., Note that if P, and p, are
mutually absolutely continuous, then (1.5) and (1.6) are identical.

For the censored model we need to find a satisfactory way to define Py and

.......................................................
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P, in terms of X and Z. These must be designed with (1.1) and (1.2) in mind. In
Theoren 3.2 we show that if pl'and p, are taken to be the survival distributions
of X and Z respectively, (1.1) and (1.2) are satisfied. It would seem more
natural to let Py and P, be the respective densities of X and Z but Example 3.3
shows that this is unsatisfactory. However, if in (1.5) Py is taken to be the
joint density of X and the vector Z= (Z, §), and P, is taken to be the product
of the X and Z marginals, then (1.1) holds with some restrictions on the convex
function f(x), and the density function of X, p(x). Property (1.2} holds without

any restrictions.

2. Measures of Bivariate Dependence.

Dependence measures have typically been developed to test for independence
between two variables or to measure the degree to which large values of one
variable go with large values of the other. Some general notions of dependence

are given in the following definition.

Definition 2.1. Given two random variables U and V we say that U and V are:

1) Positively quadrant dependent (PQD) if Pr(U<u, Vsv)2

(2.1)
Pr(Usu)Pr(Vsv) for all u, v.
2) Associated if Cov {I'(U, V), AU, V)}=0, for all T, A

(2.2)
which are componentwise increasing.
3) Left-Tail Decreasing (LTD(V|U)) if Pr(V<v|Usu) is

(2.3
decreasing in u.
4) Right-tail Increasing (RTI(V{U)) if Pr(V>v|ll>u) is

(2.4)

increasing in u.
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5) Stochastically Increasing (SI(V|U)) if Pr(V>v|U=u) is

(2.5)
increasing in u.
These notions are ordered in strength by:
SI(V|U) = RTI(V|U) = Association = PQD. (2.6)

The sequence of implications is the same when RTI(V]U) is replaced by
LID(V|U). For verification of the implications and counterexamples to the
reverse implications, see Barlow and Proschan (1975). Most of the above defini-
tions were originally given in Lehmann (1966). The notion of association was
introduced in Esary, Proschan, and Walkup (1967).

The inequalities in (2.1) - (2.5) are notions of positive dependence for a
pair of variables. Next we compare the dependences of two sets of variables,
specifically, between the variables X and Z, and X and Z., where Zi=1nin(x, Yi)’

1 2
i=1, 2. For this a slight generalization of Definition 2.1 is needed.

Definition 2.2. Given four random variables Ul’ UZ’ Vl, VZ’ form two pairs
of variables Eh =(U1, Vl) and E2==(U2, VZ)' We say that:
1) W; is more PQD than Y3 if for all u, v,
Pr(Ul <u, \!1 sV) - Pr'(U1 Su)Pr(Vl <v) 2 2.7

Pr(Uzs u, V2 Sv) - Pr(U2 < u)Pr(\’2 <v).

2) NWj is more associated than W, if

Cov {Ir(¥;), A(El)} - Cov {I‘(!_V_z), A(ﬂz)}zo,

(2.8)

for all componentwise increasing functions T, A,

et a e A T e e
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3) Wy is more LTD than W, if 4

Pr(v, <viusu’) - Pr(v, sviusu) 2
Pr(VZSVIUSU') -Pr(‘JZSVIUSu) (2.9) 4

for all v, u” <u,

4) W3 is more RTI than i, if

Pr(v, > viu>u) - Pr(v, > vli>u’) 2
Pr(\'2>v|U>u) - Pr(V2>v|U>u’) (2.10)

for all v, u”<u.

S) ¥ is more SI than ¥, if ‘

Pr(v,> viu=u) - Pr(v, >viu=u’) 2
pr(v2>viu=u) -Pr(V2>v|U=u‘) (2.11)

for all v, u“<u.
With this definition, comparisons in the censored model can be made.

Theorem 2.3. In the censored model the amount of positive quadrant depend-
ence increases as censoring decreases stochastically. That is, if Yy s YZ and

Zi=min()(, Yi), i=1, 2, then (X, 22) is more PQD than (X, 21).
Proof: Consider Pr{(X <x, Zi €2) -Pr(X<x)Pr(Zsz). There are two cases.

1) If x<z, then
Pr(X<x, Zi <z2)-Pr(Xc< x)F’r(Zi < 2)
=Pr(Xsx)-Pr(Xs x)Pr(:’.i <sz) =P(x){1- Ki(z)}
= P(X)K, (2) = P(IP(2)0, (2),

where Fi(z) = 5(2)75.1(2), the survival function of Zi.



If x>z, then

Pr(X<x, Zi <2) -Pr(Xs x)Pr(zi <1z)
= Pr{X < x, min(X, Yi) <z} -Pr(Xs x)Pr(Zi <z)
=Pr(Xsz) +Pr(zsXs<x, Y, <2) - Pr(Xsx)Pr(z; <z)
=P(2) + {P(x) - P(2)} Q;(2) - P(x) {1-P(2)q(2)}
=Q;(2) {P(2) - P(x) + P(x)P(2)} = Q,; (2)P(2)P(x). ||

i With Theorem 2.3 it is easy to construct a class of measures for which (1.1)
4 and (1.2) hold by taking averages of increasing functions of these positive
b

N quadrants. The following theorem is an easy consequence of Theorem 2.3.

Theorem 2.4. For any increasing function ¢, H(Pr(XSX, 2<2) -

Pr(X < x)Pr(Z < z)}dxdz will increase as censoring decreases stochastically.

Corollary 2.5. Cov (X, Z) increases as ccnsoring decreases stochastically.

Proof: Cov (X, Z) = ”{Pr(Xs X, 2<2) ~-Pr(X<x)Pr(Z <z)}dxdz and so the result

is immediate from Theorem 2.4. ||

Covariance is, of course, a well known measure of positive dependence. )
Many other such measures can also be shown to increase as censoring decreases

stochastically. To show this, we state the following theorem.

e

Theorem 2.6. Let (Ui’ Vi(l)). i=1l, ..., n, be independent and identically
distributed, Let (Ui’ Vi(z)), i=1, ..., n be independent and identically dis-
tributed with (Ui’ V].(.l)) more PQD than (Ui’ Vi(z)), i=1, ..., n. Letr, s be
concordant functions, that is, both r and s monotonic in the same direction in
each argument. Then {r(Ul, cens Un), s(Vgl), vees V!(ll))} is more PQD than

(2) (2)
{r(Ul, cees Un). s(V1 s eees Vn }}.
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The proof is by induction along the lines of Theorems 1 and 2 of Lehmann

(1966) .

Corollary 2.7. Kendall's 1, Spearman's L and Blongvist's q all increaso

as censoring decreases stochastically.

Proof: Kendall's t =Cov(sign()(2 -Xl), sign(Z2 - Zl)) and hence is increasing by
Theorem 2.6 and Corollary 2.5. Spearman’s P = 3Cov(sign(xz- Xl), sign(Zs- Zl))
and is increasing oy Theorem 2.6 and Corollary 2.5. Blomqvist's q=

2{Pr(X > m» 7> mz) + Pr(X sm, yA sz)} - 1 where m and m, are the medians of X
and Z respectively. This reduces to 2{Pr(X> m, Z>m ) -Pr(X>m)Pr(z> m-z) +
Pr(X < m yA sz) - Pr(X Smx)Pr(Z < mz)}, which (from Theorem 2.3) increases as

censoring decreases stochastically. ||

So the simple notion of positive quadrant dependence has yielded a large
class of measures which can be used in the censored model. It is reassuring to
note that these include some of the well-known measures of dependence. The next
notion in the chain of (2.6) is association.

In Example 2.8 we show that even though there is less censoring, association
ey decrcase. This is ccunter to the thene of (1.1) znd so association is inap-

propriate as a measure of information in the censored model.

= e

Example 2.8. Let TI'(X, Zi) =I(X>x1, Zi>zl), A(X, Zi) =I(X>x2, Z>22),

i=1, 2, and let x; <x,<z,<z,. Then Cov {I(X, Z,), (X, Z,)} = P(2,)Q;(z) -

1 2 1 2
3(21)61(21)5(12)6i(22) =F(zz)6i(zz){l-.P-(zl)-‘fi(zl)}. Choose P, Q;, Q, so that

P(z)) =1/2, Q(z)) =1, Q,(z,) =1/2, P(z,) =1/4, Q;(z,) = 5/12, Q,(z,) =1/3. Note

PO

that 6l(zi) 262(2.1), i=1, 2. Then Cov {I(X, Z,), A(X, 2,)}=5/96, and

Cov {T(X, Z A(X, Zz)}=6/96.

2)

Thus a chain of implications similar to (2.6) using (2.7) - (2.11) is not
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Theorem 2.9. If Y1 s Yz, then
(i) (X, ZZ) is more RTI than (X, Zl),
(i1) (X, ZZ) is more LTD than (X, Zl), and

(iii) (X, 22) is more SI than (X, Zl).

Proof: i) Let x“<x. Then

Pr(Z>z|X>x)-Pr(Z>z|X>x")

There erc three cases to consider.

1) Let x>x">2z, Then (2.12) reduces to Pr(Y>2z) - Pr(Y>2z) =0.

Q(z)[1- {P(2)/P(x*)}]. This decreases as Q(x) decreases.

The proofs for LTD and SI follow in an analogous fashion. |

information can be generated with Theorem 2.9.

Theorem 2.10. Let ¢y be an increasing function. Then

decreases stochastically,

decreases stochastically,

o et T et e e T AT

Ry

NP 2 Y ™ SV PO A

possible. This leaves the last three notions: LTD, RTI, and SI.

AT NN T s

(2.12)

={Pr(X>z, Y>z, X>x)/Pr(X>x)} - {Pr(X>2z2, Y>z, X>x°)/Pr(X>x")}.

2) Let x>z>x". Then (2.12) reduces to Pr(Y>2z) - {Pr(X>2z, Y>2)/Pr(X>x")} =

3) Let z>x>x". The (2.12) reduces to P(z)Q(z)[{1/P(x)} - {1/P(x")}] =

P(2)Q(2){P(x) * 3(x’)}-1{—15(x') -P(x)}, which decreases as Q decreases.

Now as in the positive quadrant dcpendence case, classes of measures of

(1) fzfx<x,¢{Pr(ZS z|X<sx") - Pr(Zsz|X<x)} dxdx“dz is increasing as censoring

(2) fzfx<x,v.'){Pr(Z >2z|X>x) -Pr(Z>z}|X>x")} dxdx“dz is increasing as censoring

....................
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\ 3 fzfxq,\b{l’r(z > zlx =x) - Pr(2>z|X=x")% dxdx“dz is increasing as censoring

decreases stochastically.

3. Coefficients of Divergence.

When X <Y we have Z=X. Since the variables X, Z are often equal, in some

sense their underlying probabilistic structures should be similar. From Kullback

e ah b B <

(1959), coefficients which increase as two distributions become less similar are

called coefficients of divergence.

D A et e 4

Csiszar (1963, 1966) generalized the Kullback-Leibler information number

in the following fashion. Let f(x) be a convex function on R* satisfying (1.3).

Let U and u, be two probability distributions on some measurable space

(X, A). Let X be a measure on (X, A) such that u, is absolutely continuous with

respect to A, i=1, 2. Let P; be the Radon-Nikodym derivative of uy with respect

to A. Define

P, (x)
I(u;, u)) =[p1(xJ f ;1—(—}{)— A(dx). (3.1)

If(“l’ uz) is the f-divergence of u, and u,.

From a completely different point of view, Ali and Silvey (1965a, 1965b,

1966) and independently Ziv and Zakai (1973) obtain an expression similar to

(3.1). Both pairs of authors consider coefic\ewts which measurc the distance

between two probability measures. Ali and Silvey postulate four properties which

they believe the coeflic venmk d(Pl, Pz) should satisfy:

1 and P2 in the

1) d(Pl’ Pz) should be defined for all measures P

sample space.
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2) d(Pl, P2) zd(Plt'l, P t'l) for all measurable transformations

2
y =t(x).

3) d(Pl’ Pl) sd(Pl, Pz) for all Pz, and if P, is singular with respect

1

to P d(Pl’ P2) zd(Pl, P3) for all P3.

2’

4) Let {Pe; 6e(a, b))} be a family of distributions with densities

pe(x) having monotone likelihood ratio in x. Then if 91< 62 < 93,

dP. , P )sd(. , P. ).
6 % € O

With these four postulates they define the coefficients of divergence as:

de(Py P) =E*[£(9)] = [, F($)dP) + P, (N) 1im £(6)/6, (3.2)

o+
dpP

dp 1
positive measure. The only difference between (3.1) and (3.2) is the dominating

where f(x) is a convex function, ¢ = , and N is 2 P_-null set where P2 has

measure A. The two measures will be identical if P1 and Pz are mutually abso-
lutely continuous. Note that the measures (3.1) and (3.2) are not symmetric in
P, and P,- However if g(x) =xf(-:lz) then If(pl’ pz) = Ig(pz, pl). Further g is
convex if and only if f is convex. Define a new functicn f*(x) = £(x) + g(x); then
the measure If* (pl, pz) will be symmetric.

With the criteria (3.1) and (3.2), measures of information in the censored
model can be generated by carefully choosing l"1 and P2 in terms of X and Z. Note

that P1 and P2 need not be probability measures., It is enough that both be inte-
grable functions and the dominating measure be sigma-finite. Then the following

can be used for information in the censored models.

Definition 3.1. Let X and Y have support on the positive real line. Then

the information in the censored model is defined as in (3.1) where
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P, (x) =Pr(X > x), the survival function of X and pz(x) =Pr(Z > x), the survival

function of Z.

Theorem 3.2. With p, and p, defined as in Definition 3.1, I.(p,, p,)

increases as censoring decreases stochastically.

Proof: Property (4) of Ali and Silvey (1966) will be used. We establish a par-

tial ordering by saying a, <a, if Yu ¢ ch . The minimum for a corresponds to
1 2

e the uncensored case. Let Xy <Xy, and note

‘ ﬁtxl) kaz)

—— — — — = F(xl)ﬁ(xz) {6(3(2) - _Q_(xl) } ’
P(x)Q(x;)  P(x)Qx,)

d which is negative far all Xy <Xy Thus the monotone likelihood ratio property

- holds. ||

N With this definition both (1.1) and (1.2) follow. At first it would seem

LA

that the more natural choice for P, and P, in (3.1) would be the density functions
of X and Z. Since X=7 when X<Y it seems reasonable to postulate that the den-
sity of Z should approach that of X as censoring decreases. The following example

shows that this need not be the case.

:} Example 3.3. Let X be defined on the points Xy» xz, X5 x4, Xg» x6, X, with
Pr(X=xi) =1/12 for i=1, 2, 3, 5, 6, 7, and Pr(xﬁxa) =1/2. Define three
censoring variables Yl’ Yz, YS’ also with support on {xl, xz, x3, x4, xs, x6, x7},

satisfying:

s s 4 8 8 4 &

Pr(Y1=xi) =1/12, i=1, 2, 4, 5, 6, 7 Pr(Y1=x3) =1/2,

Pr(Y2=xi)=1/12, i=1,2,3,5,6, 7 Pr(Y2=x4)=l/2,

PPt

Pr(Y3=xi)=1/12, i=1,2,3,4,6,7 Pr(Y3=xS)=1/2.
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Note that Y, s Y, ¢ Y,. Let Y, be independent of X, i=1, 2, 3, and let Z,
be the censored variable associated with Yi' It should be true that
! If( X, Zl) 2 If(x, 22) z'rf(x, 23), so that the least censored variable is the
least divergent from X and the most censored variable is the most divergent.
We need to compute If(x, Zi). Note that X and Zi are mutually absolutely :
continucus, so that A(x) in (3.1) is the counting measure. Also, if X=Y, we
adopt the convention that a death has been observed. Then with this convention,
direct calculations show that the vectors of probabilities {Pr(Zi= x1)’ vees
Pr(Zi==x7)}are for i =1, 2, 3 respectively, (23/144, 21/144, 64/144, 27/144,
5/144, 3/144, 1/144), (23/144, 21/144, 19/144, 1/2, 5/144, 3/144, 1/144), (23/144,
h 21/144, 19/144, 57/144, 20/144, 3/144, 1/144). Then direct substitution into

(3.1) yields

If(X, Zl) = (1/12)£(23/12) + (1/12)£(21/12) + (1/12)£(16/3) + (1/2)£(3/8)
+ (1/12)£(5/12) + (1/12)£(3/12) + (1/12)£(1/12)

If(X, ZZ) = (1/12)£(28/12) ¢ (1/12)£(21/12) + (1/12)£(19/12) + (1/2)£(1)
+ (1/12)£(5/12) + (1/12)£(3/12) + (1/12)£(1/12),

If(X, 23) = (1/12)£(23/12) « (1/12)£(21/12) + (1/12)£(19/12) + (1/2)£(57/72)

+ (1/12)£(20/12) + (1/12)£(3/12) + (1/12)£(1/12).

Thus,

1e(X, 2,) - 1 (X, Z,07(1/12)(16/33 (1/2)(3/8)- (1/12)E(19/12)- (1/2)(1),
1(X, 2,) - T(X, Z5)=(1/2)F (1) (1/12)(S/12)- (1/2)(57/72)- (1/12)(20/12) .

Take f(x) = xz. Then

(X, 2,) - 1.(X, 2,) =1.7320.

Ie(Xs 2,) - L(X, 2,) =-.030450.
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The above inequality reverses the expected order. Why does this happen?
Note that X has a large mode at the point X4 In the censoring variables, Yi'
the mode moves from Xy to X, to Xc. As the mode of Yi moves toward the mode of
X, Zi resembles X more and more. When the rode of Yi reaches that of X, Zi will
resemble X closely; zi will be unimodal at the same point as X. Now as the mode
of Yi continues moving to the right, Zi no longer kas such large probability at
X, If the mode of Yi continues to the right, eventually Zi becomes bimodal and
thus Zi appears to be different from X by a substantially greater amount than
when the modes are equal.

Thus Example 3.3 shows that with the choice P the density of X, P, the
density of Z, criterion (1.1) fails to hold. It is true however that for this
choice of P;» Py the measure does satisfy (1.2). This follows immediately from
Lemma 1.1 of Csisz3r (1967) or from Property 3 of Ali and Silvey (1966).

In order to develop a more satisfactory measure we consider the vector
2=(Z, 68) and return to the concept of dependence.

Consider X and Z as the two variables of interest; then the f-divergence of
the Radon-Nikodym derivative of the joint distribution of X and Z with respect to
the product of their marginals is the information measure.

Note that the joint density of X and Z puts positive probability on the line
where X =2, the 45° line passing through the origin. This line has zero two-
dimensional Lebesgue measure, Thus Py and P, defined as the joint distribution
of X and Z and the product of the marginals are not mutually absolutely contin-
uous. Hence the measures in (3.1) and (3.2) are no longer equivalent. Equation
(3.2) is now useful only if limf(x)/x is finite. Equation (3.1) requires a
measure A(x) which dominateSXQ;:h the joint density of X and Z and the product of

the marginals. Let A(x) be the sum of two-dimensional Lebesgue measure and a

measure u, which is Lebesgue measure on the 45° line, {(x, y): x=y, x>0, y>0}.




Dbk ula® i

- 15 -

For the joint probability measure of (X, 2), we write Pr{X=x, Z=(z, 0)}=
P(x)q(z), for x>z, 0 otherwise, and Pr{X=x, Z=(z, 1)} =p(x)Q(x), for x=z,

0 otherwise. Then (3.1) becomes

If(pxpz-’ px,(z-) = I;P(X)P(X)G(X) f{s(p—(——g-g%—-x)’;)(x)x ) } dx +

S (x)q(z) ),
fxfqu(x)q(z)P(-)f{m(z—) j dzdx,

which reduces to,

[oPIP(QAX) £{1/p(x) }x + [La ()P ()P(x) £(1/P(x) }dx. (3.3)

Take g(x) = x£(1/x); then (3.3) becomes

Tg(PxPz+ Pyyg) = JgP(XIA)E{P(X) Hx ¢ [[a(IP (0 g {P(x) Hdx. (3.4)

The expression in (3.2) can be viewed as a loss function. In this case the
amount g{p(x)} is lost when X =x is observed. If a censored observation is
observed at time x, the loss is g(F(x)). Now if censoring increases stochastic-
ally, losses g(F(x)) occur more frequently while losses g(p(x)) occur less fre-
quently. The original premise was that increased censoring leads to decreased
dependence so that the joint distribution should be closer to the product of the
marginals. Thus the f-divergence should decrease as censoring increases. Thus
if g(P(x)) s g(p(x)) the monotone criterion in (1.1) is satisfied.

Equation (3.4) can be rewritten as

04 _ - z —_ —

: 1g(PxPz» Pyxp) = [6a(2) [[op(x)g{p(x) Ydx + P(2)g{P(2) }1dz. (3.5)

3 This measure is equivalent to a measure of information in the discrete case

g developed in Hollander, Proschan, and Sconing (1985). Now if censoring increases

Y] stochastically (3.5) should decrease. This is equivalent to the term
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p(2) =J'(z)p(x)g(p(x))dx+'P'(z)g('l7(z)) being increasing. Assume g is . event.avl¢ AT

v’ (2) =p(z)g{p(2)} - p(2)P(2)g"{P(2)} - p(z)g{P(2)},
which is positive if and only if for every z
g{p(2)} 2P(2)g’{P(z)} + g{P(z)}. (3.6)

Unfortunately inequality (3.6) is not always satisfied. For example, take
g(x) = -logx and P(x) = exp{-Ax}; then the direction of the inequality depends on X.
However some conditions can be found for g(x) and p(x) so that (3.6) is satisfied.

Two such conditions are:

Cl: g decreasing on [0, 1] and p(z'){i"(z)}-1 <2

C2: g increasing on {0, 1] and p(z){F(z)}'lzz

Theorem 3.4. If either Cl or C2 hold and g“(x) is continucus on [0, =], then

I g(pxpz_.‘px,(_z_) is decreasing as censoring increases stochastically.

Proof: It is enough to show (3.6). Expand g(p(z)) in a Taylor series about

P(z). Then

glp(2)} 2 g{P(2)} + g”{P(2) Hp(2) - P(2)}
2g{P(2)} + P(2)g"{P(2)} + g"{P(2) Hp(2) - 2P(2)}

2 g{P(2)} + P(2)g"(P(2)},
if g*{P(z2)Xp(z) - 2P(2)} 20, which holds if Cl1 or C2 hold. ||

In terms of the original function £(x), g(x) decreasing is equivalent to

f(x)/x increasing, 1< x<®, Most of the functions f(x) which are commonly used

in f-divergence satisfy the necessary condition.

-
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Example 3.5.

1) f(x) = xlogx g(x) = -logx Kullback-Leibler.
Information number

2) f(x)=(1/2) (x;i - 1)2 g(x) = (1/2) (xli - 1)2 Hellinger metric
3) f£(x)=(1/2)|x-1] g(x) = (1/2) |x - 1] city-block distance
4) f(x)=(x- l)2 g(x) = (x- l)zlx xz-distance

It is easy to verify that in the above four cases, g(x) is decreasing. Note
tha? the third function does not satisfy the conditions of Theorem 3.4. However

the ordering still holds under slightly more restrictive conditions.

Theorem 3.6. If g is decreasing on (0, 1) and p(z) (F(z))'1 <1, then

Ig(pxpz. Py ‘Z) is decreasing as censoring increases stochastically.

Proof: If g is decreasing and p(z)/P(z) <1, g{p(z)}2g{P(z)}. Equation (3.6)

follows since g”(x) <0 on (0, 1). ||

These last two theorems use the divergence measure as defined in (3.1). As
was stated previously (3.2) is not satisfactory unless limf(x)/x<=, Of the
four functions cited in Example 3.5 only the second andxt;:rd functions fit this
criterion. In particular the third function, f(x) = (1/2)|x- 1] is the one orig-
inally proposed by Ali and Silvey (1965a) for measuring dispersion between the
joint distribution of two variables and the product of their marginals. In the

censored model, the set N corresponds to the set where X =2, or equivalently, when

XsY. Then (3.2) becomes

d¢(Pyzs Pep,) = [RaF2 () £(1/F(x) Mx + cfpp(x)Qx)dx (3.7)

where ¢ = lim f(x)/x.
X > o

.........
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Theorem 3.7. If f is such that limf(x)/x=c<e» and f(x)/x is increasing
X+

for 1 <x<=, then df(prZ, pxpz) increases as censoring decreases stochastically.

Proof: Consider (3.7) as an expected loss over the variable Z with loss
P(x)£{1/P(x)} when Z=x and Y <X, and loss c when X<Y. So the loss function can
be written as P(x)f{ I/F(x) JI(Y<X) +cI(XSY). As Y increases stochastically,

so does Z. Since f(x)/x increases to ¢ as x increases, the loss function is

increasing., Hence the expected loss increases. ||

In Example 3.5 both the Hellinger metric and the city-block distance satisfy

PG A

the conditions of Theorem 3.7. The conditions in Theorem 3.7 are less restric-

tive than those of Theorem 3.4 in the sense that there is no condition on the

=y
“u
N distribution of X. Of course the conditions in Theorem 3.7 are more restrictive
N in the scnsc that they allow far fewer functions f.
Acknowledgement: We are grateful to Professor Ian McKeague for helpful
- conversations about information.
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